Optimising hazardous materials transport network based on multi-objective hybrid intelligence algorithm
نویسندگان
چکیده
Hazardous materials transport network optimisation is the basis of ensuring the safety of hazardous materials transport. Considering the uncertainty of much basic information in hazardous materials transport system, this paper proposes the multi-objective chance-constrained programming model for hazardous materials transport network under uncertainty optimisation theory framework. Then, the paper builds the multi-objective hybrid intelligent algorithm to solve the model. The algorithm applies the stochastic simulation and fuzzy simulation to simulate uncertain parameters, adopts the priority coding way to code chromosome, applies the chromosome marker selection strategy to complete the selection operation, adopts the priority index crossover operator to ensure offspring’s inheritance and advantages for the parent, uses the single parent vicinal swap method to complete mutation and applies the exclusive method to build dominating sets. Finally, the case study shows the model and algorithm are feasible.
منابع مشابه
Finding the Optimal Path to Restoration Loads of Power Distribution Network by Hybrid GA-BCO Algorithms Under Fault and Fuzzy Objective Functions with Load Variations
In this paper proposes a fuzzy multi-objective hybrid Genetic and Bee colony optimization algorithm(GA-BCO) to find the optimal restoration of loads of power distribution network under fault.Restoration of distribution systems is a complex combinatorial optimization problem that should beefficiently restored in reasonable time. To improve the efficiency of restoration and facilitate theactivity...
متن کاملSolving a Multi-Objective Location-Routing Problem for Hazardous Waste Management Industrial
Industrial hazardous materials (hazmat) are byproduct of industrial production and include hazardous goods, such as flammable, toxic and corrosive materials that pose a risk to the environment.Hazardous waste management includes collection, transportation, treatment, recycling and disposal of industrial hazardous material in an organized manner. With the increasing industrialization of countrie...
متن کاملNovel Hybrid Fuzzy-Intelligent Water Drops Approach for Optimal Feeder Multi Objective Reconfiguration by Considering Multiple-Distributed Generation
This paper presents a new hybrid method for optimal multi-objective reconfiguration in a distribution feeder in addition to determining the optimal size and location of multiple-Distributed Generation (DG). The purposes of this research are mitigation of losses, improving the voltage profile and equalizing the feeder load balancing in distribution systems. To reduce the search space, the improv...
متن کاملA New Hybrid model of Multi-layer Perceptron Artificial Neural Network and Genetic Algorithms in Web Design Management Based on CMS
The size and complexity of websites have grown significantly during recent years. In line with this growth, the need to maintain most of the resources has been intensified. Content Management Systems (CMSs) are software that was presented in accordance with increased demands of users. With the advent of Content Management Systems, factors such as: domains, predesigned module’s development, grap...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJISTA
دوره 15 شماره
صفحات -
تاریخ انتشار 2016